Support Union Recovery in High - Dimensional Multivariate Regression

نویسندگان

  • Guillaume Obozinski
  • Martin J. Wainwright
  • Michael I. Jordan
  • M. I. JORDAN
چکیده

In multivariate regression, a K-dimensional response vector is regressed upon a common set of p covariates, with a matrix B∗ ∈ Rp×K of regression coefficients. We study the behavior of the multivariate group Lasso, in which block regularization based on the `1/`2 norm is used for support union recovery, or recovery of the set of s rows for which B∗ is non-zero. Under high-dimensional scaling, we show that the multivariate group Lasso exhibits a threshold for the recovery of the exact row pattern with high probability over the random design and noise that is specified by the sample complexity parameter θ(n, p, s) : = n/[2ψ(B∗) log(p− s)]. Here n is the sample size, and ψ(B∗) is a sparsity-overlap function measuring a combination of the sparsities and overlaps of the K-regression coefficient vectors that constitute the model. We prove that the multivariate group Lasso succeeds for problem sequences (n, p, s) such that θ(n, p, s) exceeds a critical level θu, and fails for sequences such that θ(n, p, s) lies below a critical level θ`. For the special case of the standard Gaussian ensemble, we show that θ` = θu so that the characterization is sharp. The sparsity-overlap function ψ(B∗) reveals that, if the design is uncorrelated on the active rows, `1/`2 regularization for multivariate regression never harms performance relative to an ordinary Lasso approach, and can yield substantial improvements in sample complexity (up to a factor of K) when the regression vectors are suitably orthogonal. For more general designs, it is possible for the ordinary Lasso to outperform the multivariate group Lasso. We complement our analysis with simulations that demonstrate the sharpness of our theoretical results, even for relatively small problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional support union recovery in multivariate regression

We study the behavior of block `1/`2 regularization for multivariate regression, where a K-dimensional response vector is regressed upon a fixed set of p covariates. The problem of support union recovery is to recover the subset of covariates that are active in at least one of the regression problems. Studying this problem under high-dimensional scaling (where the problem parameters as well as ...

متن کامل

High-dimensional union support recovery in multivariate regression

We study the behavior of block `1/`2 regularization for multivariate regression, where a K-dimensional response vector is regressed upon a fixed set of p covariates. The problem of union support recovery is to recover the subset of covariates that are active in at least one of the regression problems. Studying this problem under high-dimensional scaling (where the problem parameters as well as ...

متن کامل

Block Regularized Lasso for Multivariate Multi-Response Linear Regression

The multivariate multi-response (MVMR) linear regression problem is investigated, in which design matrices are Gaussian with covariance matrices Σ = ( Σ, . . . ,Σ ) for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) are recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions to guarantee successful recovery ...

متن کامل

Sharp Threshold for Multivariate Multi-Response Linear Regression via Block Regularized Lasso

for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) is recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions on sample complexity are characterized as a sharp threshold to guarantee successful recovery of the support union. This model has been previously studied via l1/l∞regularized Lasso by Negahban & Wain...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009